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Abstract

We explore applications of quantum computing for radio interferometry and astronomy using recent developments in quantum
image processing. We evaluate the suitability of different quantum image representations using a toy quantum computing image
reconstruction pipeline, and compare its performance to the classical computing counterpart. For identifying and locating bright
radio sources, quantum computing can offer an exponential speedup over classical algorithms, even when accounting for data en-
coding cost and repeated circuit evaluations. We also propose a novel variational quantum computing algorithm for self-calibration
of interferometer visibilities, and discuss future developments and research that would be necessary to make quantum computing

for radio astronomy a reality.
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1. Introduction

The exploitation of high-end, groundbreaking computing
technologies has become essential for observational and the-
oretical astrophysics research. Next generation surveys and
scientific instruments such as the the Square Kilometer Array
(Santander-Vela et al., 2017), the Cherenkov Telescope Array
(CTA Consortium, 2011), and the James Webb Space Telescope
(Gardner et al., 2006) will produce exponentially more data
than their predecessors, and will need outstanding resources to
be post-processed, analyzed and stored. Moreover, numerical
simulations, a theoretical counterpart capable of reproducing
the formation and evolution of the astrophysical structures of
our Universe (Vogelsberger et al., 2020), must be extended to
larger volumes, higher resolutions and more sophisticated mod-
els to match the extensive data of the upcoming surveys.

Quantum computing (QC) exploits principles of quantum
mechanics to perform computational operations (Benioff, 1980;
Aharonov, 1999). In certain cases, algorithms designed to take
advantage of QC can offer exponential speedup compared to
their classical counterparts, known as quantum advantage. Per-
haps the most famous application of quantum computing is
Shor’s algorithm (Shor, 1999), which can solve prime number
factorization in polynomial time. Recent years have witnessed
rapid progress of quantum hardware technology, leading to the
development of quantum processors that can support up to hun-
dreds of qubits (Chow et al., 2021).

Exploiting QC solutions is a novel direction for Astro-
physics. So far, quantum machine learning has been applied
for the binary classification of pulsar data (Kordzanganeh et al.,
2021), a hybrid quantum support vector machine has been pro-
posed for classifying galactic morphology (Hassanshahi et al.,
2023), and an algorithm using variational quantum comput-
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ing has been developed for dark matter cosmological simula-
tions (Mocz and Szasz, 2021). However, QC for radio interfer-
ometry remains completely unexplored.

In this paper we develop and analyse QC data representa-
tions and algorithms in the context of radio interferometry, us-
ing recent developments in the field of quantum image process-
ing (see (Wang et al., 2022) for a recent review of this field).
Our goal is to evaluate the quantum advantage for radio astron-
omy, determining if QC algorithms and data encodings can ever
achieve better performance than their classical counterparts.
We also consider quantum utility, the effectiveness and prac-
ticality of QC algorithms on current or near-term hardware.

2. Radio interferometry

Most modern radio telescopes are radio interferometers, such
as the Atacama Large Millimeter/submillimeter Array (ALMA;
Wootten and Thompson (2009); Carpenter et al. (2023)), the
Very Large Array (VLA; Selina et al. (2018)), Low Fre-
quency Array (LOFAR; van Haarlem et al. (2013)), MeerKAT
(Jonas and Team, 2016), or the future Square Kilometer Ar-
ray (Santander-Vela et al., 2017). Interferometry allows as-
tronomers to bypass the inherent angular resolution of a single
dish and obtain images of radio sources with very fine angular
resolutions of up to milliarcseconds (Jennison, 1958), allow-
ing scientsits to image even the black hole at the center of our
Galaxy (Event Horizon Telescope Collaboration, 2022). We
refer readers to Thompson et al. (2017) for a more complete
treatment of radio interferometry, and merely provide an abbre-
viated overview here.

Radio interferometers measure information about the sky in
Fourier space, also called visibility space. The relation between
the visibility space measurement and the brightness distribution
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of astrophysical radio sources is described by the van Cittert-
Zernike theorem (Born et al., 1999), which states that the two-
point correlation function of the electric field measured by two
antennas of a radio interferometer is the Fourier-transformed
intensity distribution of the sources:

Vi) = f f S(x,y) €27 ) g dy )

where S (x, y) is the image of the radio sky, V(u,v) is the sam-
pled visibility space, x,y are angles in tangent plane relative to
the pointing direction in the E-W and N-S directions, and u, v
are spatial frequencies in E-W and N-S directions. We note that
this is a simplification: the sky is a sphere, not a tangent plane.

By applying the inverse Fourier transformation to the data,
one can reconstruct the image of the radio sky. First, the visibil-
ity measurements are resampled onto a regular grid V € CM¥V
using a gridding algorithm (Cornwell and Wilkinson, 1981;
Cornwell and Perley, 1992) such as IDG (van der Tol et al.,
2018). Then, the 2D discrete Fourier transform can be used to
reconstruct the the matrix S? € RV*V:
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where /,m and j, k index the x,y and u, v coordinates, respec-
tively, and by = 3, 6(j — jark — ko) is the visibility sam-
pling function defined by the instrument geometry. The true
sky model S can be written as S = B x S, where B is the
point-spread function (or “dirty beam”) of the instrument and
defined as the Fourier transform of b. The true sky model S
must then be constructed by recursively deconvolving the dirty
beam from the “dirty image” S P with a process like such as the
CLEAN algorithm (Hogbom, 1974).

In the rest of the paper, we explore the advantages of re-
placing the 2D discrete Fourier transform of Equation 2 with
a quantum algorithm. Naively, reconstructing S requires N*
operations: each of the N? pixels in S requires the sum of N?
elements. However, for a regular grid this can be calculated
with the fast Fourier transform algorithm in O(N? log, N?) =
O(N?log, N) time (Brigham and Morrow, 1967).

3. Quantum computing

In classical computing, a bit at a given address can only hold
one of two values: 0 or 1. In QC, the basic unit of information is
the qubit, a quantum mechanical system with two orthonormal
basis states |0) and [1). A single qubit represented by wavefunc-
tion [¥) can be written as a superposition of these computational
basis states:

I¥) = «|0) +BI1) 3)

where @ and § are complex probability amplitudes. By the Born
rule, the probability of measuring [¥') to be in state |0) is la?,
and the probability of measuring |'¥') to be in state |1) is |,8|2.
Exactly what the |0) and |1) basis states represent depends on
the QC hardware. For example, a qubit could be represented by
atomic spin, with |0) representing the spin-down state and |1)

representing the spin-up state (Cory et al., 1997; Gaita-Arifo
etal., 2019).

Quantum states can be modified using unitary matrix opera-
tions called “gates” applied to single or multiple qubits. Some
commonly used single qubit gates are the Hadamard gate H
(Aharonov, 2003) and the R.(6)/R,(6)/R.(6) rotation operator
gates (Barenco et al., 1995), and examples of multi-qubit gates
are the CNOT and S WAP gates. A quantum circuit is com-
posed of an ordered sequence of these quantum gates. For ex-
ample, the quantum state |¥) from Equation 3 can be prepared
from a |[¥) = |0) state by applying a Hadamard gate to create
an equal superposition state |¥) = \/LE |0) + % |1), and finally a
rotation operator gate to set the correct relative amplitudes. En-
coding classical data into a multi-qubit quantum state is non-
trivial and cannot always be performed efficiently. The time
complexity depends on the encoding algorithm and on the data
itself (Weigold et al., 2022).

Due to the randomness inherent in the quantum measure-
ment, quantum states must often be prepared and measured
multiple times, or “shots,” to obtain statistically robust results.
For example, suppose one wants to measure the value of |/
from the quantum state |¥) in Equation 3. A single measure-
ment will collapse |¥) into |0) or |1), and the state |¥) must be
prepared again to repeat the experiment. The value of |a|* can
then be estimated by comparing the number of times |0) is mea-
sured compared to the total number of experiments, following
binomial distribution statistics.

Real quantum hardware is noisy and prone to error. This
means that in addition to the uncertainty inherent in the mea-
surement of a quantum state, quantum gate errors can corrupt
qubits of the quantum circuit. Typically the different quantum
gates of a quantum computer will have different error rates,
which much be taken into account to evaluate the realistic ac-
curacy of a quantum algorithm.

3.1. Quantum data representations

Consider a classical image with N2 pixels, which we repre-
sent as a 2D matrix V;;, where i and j are the row and column
indices, or as a flattened vector Vj, where & is an index over all
pixels. We define the normalized pixel values ¢y = Vi/ (/> V,f.
A classical computer can represent the real-valued Vi as an
array of 64-bit floats, where each position in the array corre-
sponds to a pixel in the image, and each value in the array rep-
resents the pixel value. The representation of an N X N-pixel
image requires 64N? bits.

Classical data can be directly represented in a quantum state
using binary encoding (Cortese and Braje, 2018). Each bit
with value O or 1 of the binary representations of the pixel val-
ues V is simply represented by a corresponding quantum state
|0) or [1), respectively. In the case where V; are 64-bit floats
representing complex-valued visibility data, the entire image
matrix can be encoded with 64N? single-state qubits.

Further data compression can be achieved with the quantum
lattice implementation (Venegas-Andraca and Bose, 2003), in
which the value of a pixel ¢ is represented by a single qubit:

[Wi) = cos 6, [0) + sin G |1) (@)



where 6, = gck. Thus the entire image can be encoded with N 2
qubits each in a superposition of two states. The measurement
of the state returns either |0) or |1) with probability proportional
to 6. This state can easily be encoded using a Hadamard gate
and a rotation operator gate as described above.

One of the most important aspects of quantum systems is
a property known as entanglement. Entanglement between
states is necessary to achieve any significant computational
speedup of QC over classical computing (Cortese and Braje,
2018; Jozsa and Linden, 2003). Entanglement is used for
the Flexible Representation of Quantum Images (FRQI; Le
et al. (2011)) representation, encoding the positional informa-
tion with log,(N?) + 1 entangled qubits. The full image is rep-

resented by:
N>-1

|lI’> = % Z (COS 9]( |0> + sin 9]( |1>) ® |k> (5)
k=0

Where 6, € [0,7/2] is the scaled color information as before
and k = 0,..., N> — 1 indexes the computational basis vectors
|k) which representing the pixel coordinates in binary strings
of log,(N?) qubits. For example, pixel 2 is represented by
k=2) = |0) ® ... ® |1) ® |0). This encoding requires only
log, N2 + 1 qubits in a superposition of 2N? states. Preparation
of this state can be expensive, with a proposed circuit depth
of O(N*) operations in Le et al. (2011), but can be reduced
to O(N*log,N) operations by introducing additional ancillary
qubits (Khan, 2019).

The efficiency of quantum encoding is taken to its extreme
with Quantum Probability Image Encoding (QPIE; Yao et al.
(2017)). We encode an N X N image as an N>-state superposi-
tion of log, N? qubits:

N-1
¥y =" alo ©)
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where the amplitude of each state is determined by the corre-

sponding pixel value ¢; = V;/ /Y, V2, for the flattened image
vector V. By the Born rule, each measurement of the state will
return a combination of qubits corresponding to the binary im-
age index i, with probability proportional to the pixel value V;.
If N is an even power of two, then we can rewrite the QPIE
encoding to explicitly express the row and column indices:

N-1N-1
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See Fig.(1) for an example of this coordinate mapping for a 2x2
image.
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Figure 1: Scheme showing the separation of row and column indices.

Several different algorithms exist for preparing the QPIE rep-
resentation, with different assumptions and tradeoffs for ancil-
lary qubits, accuracy of the representation, and other parame-
ters (Grover and Rudolph, 2002; Soklakov and Schack, 2004;
Shende et al., 2006). Several state preparation algorithms with
circuit depths varying from O(log, N x log, N) to O(N*) are
proposed in Zhang et al. (2021).

There are many other quantum encodings for image repre-
sentations (see Wang et al. (2022) and Anand et al. (2022) for
reviews), but we will only consider the above quantum repre-
sentations in the rest of this paper.

3.2. Quantum Fourier transform

The Quantum Fourier Transform (QFT) is the quantum ana-
logue of the DFT. It is a quantum circuit which acts on the
quantum state |X) = Zjﬁif,l x;j|j) and maps it to the quantum
state |Y) = Z,f’i?)] vk |k) (Nielsen and Chuang, 2010), where the
coeflicients are given by:

| Ml
_ i jk/M
Vo= —= ) Xje

The QFT circuit requires O(n?) gates, where 7 is the number of
qubits in the input and output states.

To apply the 2D QFT to the QPIE encoding of a 2D N X N
image of Eq. 6, we can first apply the QFT to the row index
qubits and then apply the QFT the column index qubits (Li
et al., 2018). This is equivalent to applying a QFT to first half
and second half of the qubits separately. As a QPIE encoding
of an image with N? pixels only needs log, N? qubits, the QFT
can be evaluated on this encoding with only O(log, N x log, N)
operations.

An implementation of the quantum FFT algorithm exists
which has lower computational complexity with respect to the
QFT (Asaka et al., 2020), but it relies on the image being em-
bedded in a basis encoding rather than the amplitude encoding
used by QPIE.

4. Experimental demonstrations

Current QC hardware is often noisy and can only support
small numbers of qubits (Preskill, 2018). On the IBM plat-
form, the public can only access up to seven qubits, limiting us
to representations with only 4 X 4 pixels for the QPIE encod-
ing. Instead we run our experiments using the QASM simulator
(Qsikit, 2023). This simulator emulates the execution of a quan-
tum circuit on a real device. We do not include any modeling
of gate or measurement errors. The code used for the demon-
strations in Section 4.1 is available on GitHub'.

1 https://github.com/QuantumRadioAstronomy/MA2-
project_-QuantumRadiolmage


https://github.com/QuantumRadioAstronomy/MA2-project_QuantumRadioImage
https://github.com/QuantumRadioAstronomy/MA2-project_QuantumRadioImage

Number Of Qubits

1024 — QPIE
----- Scaled QPIE
101 4
2 3 4 5 6 7 8 9 10

Number Of Antennas

Figure 2: Evolution of the number of qubits required for QPIE and binary
encoding for storing M(M — 1)/2 correlated visibilities and their complex
conjugates for increasing number of antennas M. QPIE requires fewer qubits
compared to the binary encoding, scaling logarithmically instead of
quadratically with M. We also show the QPIE qubits scaled by a factor of 128
(dotted blue line) to better show the quadratic versus logarithic dependence.

4.1. Encoding & decoding

An incredible level of information compression can be
achieved using quantum data encoding. For example, an in-
terferometer with M antennas will produce B = M(M — 1)/2
correlated visibilities. In classical computing, the data for a
given timestep can be encoded with B 64-bit floats represent-
ing complex-valued visibility data. However, the QPIE en-
coding leverages superposition to achieve logarithmic compres-
sion, only needing log,(B) qubits, as shown in Fig. 2.

Encoding complex-valued numbers as complex probability
amplitudes of a quantum superposition is straightforward, but
the measurement of a quantum state can only return the real
magnitude of the phases. In terms of practical applications of
the QFT and encoding visibility data, this means that complex
phases cannot be directly measured. For radio interferometry,
while we can use QC to reconstruct real-valued images from
complex visibilities (“invert” step in data reduction), predicting
complex visibilities from images (“predict” step in data reduc-
tion) is not straightforward.

Even if the QC can offer impressive data compression, mea-
surement of a quantum state introduces inherent randomness.
Quantum image representations must be re-encoded and re-
measured multiple times to measure the state with high accu-
racy. This additional measurement error is a fundamental con-
sequence of using QC compared to classical computing.

We evaluate the number of measurements Ny tO Create an
accurate reconstruction of an image starting from the FRQI and
QPIE encodings. We generate images of different sizes, with
pixel values drawn from the uniform distribution U(0, 1), and
compare the original with the quantum circuit output, shown in
Fig. 3. We see that both encodings offer comparable accuracy
as a function of shot number. For both encodings, very large
numbers of shots Nos = N;ix = N* are required to reconstruct
a random input image with < 10% error.
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Figure 3: Image reconstruction accuracy as a function of Ngpos and image size

for the FRQI and QPIE encodings. Both encodings offer comparable accuracy,

and require large numbers of shots Nghots = Nsix = N* to reconstruct a random
input image with < 10% error.

4.2. Quantum images and source identification

Astronomical images are often sparse and noisy, and reliable
characterizations of radio sources do not necessarily need mea-
surements of every single pixel in the image. We developed
a mock source fitting pipeline in the style of pyBDSF (Mohan
and Rafferty, 2015) or Agean (Hancock et al., 2018) to evaluate
the performance and tradeoffs of quantum images, available on
GitHub?. Randomly placed point sources are convolved with
a Gaussian kernel with o = 1.5 pixels. Then, random Gaus-
sian noise is added to create a mock observed image. This
image is then embedded in a QPIE, FRQI, or Quantum Lat-
tice representation and reconstructed with varying numbers of
shots to create reconstructed quantum images. We recursively
fit 2D Gaussians to the reconstructed images to identify all of
the sources. Example images from this simple simulation are
shown in Fig. 4.

The distance between the reconstructed and true sources are
used as a metric of image quality. We consider that a source
is correctly identified if it is reconstructed with a 1.5 pixel dis-
tance from the true source. We evaluate the Ny, scaling with
image size vs efficiency in Fig. 5 for two source finding scenar-
ios. In the first scenario, we scale the number of sources with
image size Nyource ¢ Npix = N? and have a lower SNR=10 for
each source, shown in Fig. 5a. This model approximates a typ-
ical radio source catalog creation pipeline. In the second sce-
nario, we have a single source with a high SNR=100, shown in
Fig. 5b. This model approximates searches for bright transient
phenomena in the image domain.

For QPIE, we see that when Ngwot = Npixet = N2, the re-
constructed quantum image is of good quality with respect to
the classical image. In images with high signal-to-noise, even
fewer shots can be taken. We see comparable source identifica-
tion efficiency for Ng,or = N? and Ny = N?/2 for low-noise

2https ://github.com/QuantumRadioAstronomy/QCRadioSimulator
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Figure 4: Mock source identification test with QPIE for a N X N = 32 x 32 pixel image. Five point sources are convolved with a Gaussian kernel with o = 1.5
pixels and Gaussian noise is added to create the mock observed image. This image is then embedded in a QPIE and reconstructed with varying numbers of shots to
create the reconstructed quantum images.
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Figure 5: Efficiency of source reconstruction for classical vs quantum computing as a function of image size Npix = N? for three different quantum image
encodings: QPIE, FRQI, and Quantum Lattice. For both source identification scenarios, the number of shots used to reconstruct the quantum image is scaled as a
function of image size in order to evaluate the scaling relation. A source is considered correctly identified if it is reconstructed with a 1.5 pixel distance of the true
source. The dotted lines reflect the relative efficiency of the quantum implementation with respect to the classical implementation. For the noisy SNR=10 images

occasionally we observe that the quantum implementation has better performance than the classical image. Occasionally overlapping sources will not be recovered
by the classical algorithm but will be recovered by a low-shot quantum algorithm.

images. As the noise increases, Nghot = N? retains good effi-
ciency, but the other sampling scenarios suffer in performance.

The FRQI representation has a high probability to return pix-
els associated with low flux values, and therefore many shots
are required to reconstruct the sources. We find that the FRQI
representation needs at least Nypo = N;ix = N* shots.

The Quantum Lattice representation shows comparable sam-
pling scaling to the QPIE representation, despite the drastically
different number of qubits used by each encoding.

Our model pipeline is a simple approximation of real scien-

tific use case of identifying radio sources in large-scale surveys
or searching for transients in the image plane (Swinbank et al.,
2015). We find that for these sparse images that the Quan-
tum Lattice and QPIE quantum data representations can offer
comparable source reconstruction performance with respect to
classical computing without requiring an intractable number of
shots. However, measurements of extended structure or cosmo-
logical signals will require high-dynamic range, high-fidelity
images which may require Ngos > N;ix and thus are not suited
for the quantum image encodings discussed in this work.



Image Encoding Quantum Lattice FRQI QPIE
# of qubits for representation N? logy, N? + 1 log, N?

Encoding circuit depth 1 O(N%) | O(N?log,N) O(N%) O(log,N x log,N)
Ancillary qubits for encoding circuit None None O(log,N) O(log,N) ON%
Nihots for multi-source reconstruction O(N?) O(N%) O(N?%)

Nihots for single bright source O(N) O(N%) O(N)

Table 1: The computational complexity of different stages of quantum computation represented in Fig. 6 and studied in this work. Encoding the FRQI state
requires a circuit depth of O(2*") = O(N*) (Le et al., 2011), but can be reduced to O(NzlogzN) operations by introducing additional ancillary qubits (Khan, 2019).
There are many algorithms for QPIE state preparation, but we pick two with circuit depths varying from O(N*) to O(log, N x log, N) from (Zhang et al., 2021).

5. Quantum Advantage

Evaluating quantum advantage is not as simple as comparing
the algorithmic complexity between a classical and quantum al-
gorithm. Information must also be extracted from the quantum
state, and measurement destroys the superposition. To generate
multiple measurements of a quantum image, the entire image
representation must be re-encoded and re-measured. Thus the
cost of the state preparation and the number of shots needed to
reconstruct the image must be taken account into the algorith-
mic complexity, as shown in Fig. 6. We note that it is possible
that this encoding cost may be bypassed with quantum random
access memory, allowing the input data can be stored in ancil-
lary qubits and copied instead of expensive re-encoding. How-
ever, we consider our model in Fig. 6 realistic for near-term
quantum computers.

A summary of the algorithmic complexities for the different
quantum image encoding strategies is shown in Table 1. Let
us consider the case of reconstructing the real-valued dirty im-
age SP from the complex-valued measured visibilities V. In
the classical domain, this operation requires O(N*) operations
using the DFT, or O(Nlog,N) operations using the FFT.

The QFT offers impressive speedup, only needing
O(g(N*)) = O(log,N x log,N) operations on the QPIE
encoding, outperforming both the DFT and the FFT. However,
the cost of the state preparation and the number of shots
needed to reconstruct the image must be taken account into the
algorithmic complexity, as shown in Fig. 6. If we consider the
optimal QPIE circuit depth of O(f(N?)) = O(log,N x log,N),
and the optimal number of shots needed to reconstruct sources
Nihots the true complexity of the QFT is:

O(M x (f(N?) + g(N*))) = O(Nghots X log,N x log,N)  (8)

Depending on the number of shots needed to perform the mea-
surement, the QFT may not offer quantum advantage. If a high-
fidelity image needs to be extracted from the quantum com-
puter, then Nghos becomes intractably large. However, if only
a few samples of the image are needed, the problem becomes
more manageable. In the case of identifying oc N? sources in
an image, Nghots = O(N?) shots are needed, which has quantum
advantage over the DFT but not the FFT. In the case of iden-
tifying one bright source in an image, Ng,os = O(N) shots are
needed, offering exponential speedup over the FFT.

The number of shots required will not change as quantum
hardware improves, but can be improved with algorithmic de-
velopment. It is advantageous to stay in the quantum domain
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Figure 6: Scheme showing the computational complexity of encoding and
measurements.

for as long as possible before measuring the state, ideally per-
forming additional data reduction so that fewer shots are re-
quired for analysis. This could include performing gridding,
deconvolving S to reconstruct S, running additional image
analysis algorithms, doing quantum machine learning, etc.

6. Quantum gain calibration

Reconstructing an image of the radio sky is more complex
than simply applying the DFT to the antenna visibilities. The
electric field measured by a single radio antenna is not constant
with time. Drifting antenna-specific gain terms g; can distort
the true signal, and need to be corrected through calibration.
As a proof-of-concept, we define and implement a quantum al-
gorithm for calibration using quantum variational circuits (Pen-
nylane, 2023b).



6.1. Classical Calibration

If each antenna i in a radio interferometer measures a volt-
age v;, then the measured visibilities are correlations between
those voltages Vi = E[v;y;]. When antenna-specific gain
terms distort these measurements, the observed visibilities will
be \~/jk = g,g;Vjx (Smirnov, 2011).

We correct for the unknown gain terms by observing a known
source /,, with the instrument, and calculating the expected vis-
ibilities with the DFT: V = DFT(/,,;). The complex gains can
be determined by minimizing the residual of the least-squares
optimization problem:

R=[Vi—gigiVul ©)
ik

V are the known, observed visibilities, V are the expected true
visibilities given by V = DFT(/), and g;, g; are the unknown
gain factors.

In this toy model, we will assume that the interferometer ge-
ometry samples every point in Fourier space, allowing us to
represent V using the 2D image QPIE encoding. However, this
technique can easily be extended to more realistic interferome-
ter models with a different choice of quantum data encoding.

6.2. Quantum Implementation

We define our variational circuit using the QPIE encodings
corresponding to |if) = V; jand |¢) = gigj. Vij, combined with the
SWAP test (Buhrman et al., 2001). The SWAP Test allows one
to compute the quantity | (/¢ |> between two quantum states,
and its circuit is shown in Fig. 7.

[0) B
")
) ———
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Figure 7: The SWAP Test circuit.

In this circuit, the measurement of the first qubit will yield |1)
with probability P(|1)) = 3 — $|(¢I¢) [* (Buhrman et al., 2001).
We define the cost function to be minimized as follows:

I 1
Cllgh) = PUD) = 5 = 51 Wi) P (10)

Where |y/) and |¢) are the QPIE states of gigj Vij and V, j» TEspec-
tively. One can find the parameters g; so that \7, jand gig}f Vij are
as close as possible by maximizing the dot product | (¢} %,
and thus minimizing C({g;}).

We minimize this cost function with quantum gradient de-
scent (QGD; Khokhar (2023)). Given the measurement of our
variational circuit C({g;}) at step k, the parameters are updated
at step k + 1 with the rule gEkH) = g;‘ —10,,C({g}), until con-
vergence, where 7 is the learning rate parameter. In the quan-

tum implementation, the gradients are computed using param-
eter shift rule (Pennylane, 2023a) given by:

ag,C({gz}) = 6g,-C(gl LIRS gi’ A gn)

= m[C(gl’ s 8i +5,... gn) - C(gl» s 8i TS5 e gn)]

QY

where the multiplier m and the shift s are typically chosen to
be m = 1/2 and s = x/2. It is important to emphasize that
in this approach, the shifts employed are not infinitesimal as
typically used in finite differences. This technique facilitates
the computation of gradients in a straightforward manner. The
QGD algorithm has a theoretical computational complexity of
O(1) (Jordan, 2005) for evaluating the gradient, which provides
significant advantages over classical algorithm with a compu-
tational complexity of O(d), where d is the number of input
parameters.

The full algorithm is shown in Alg. 1. Because C({g;}) must
be measured through repeated measurements of our variational
circuit, the efficiency of this algorithm strongly depends on the
data encoding strategy.

Algorithm 1: Quantum Gain Calibration

Data: \7, \%4
Result: {g;} minimizing 3, |V, — gig*Vi;[*
Function SWAPtest ({g;}): .
W) g,-gj. V;j in QPIE encoding
¢y — Vi ; in QPIE encoding
Perform SWAP test on |¢) and |¢)
return measurement of first qubit with
P(I1)) = 5 — 31wy 2, P(0)) = 1 = P(|1))
Function CostFunc ({g;}):
C<0
for N iterations do
L C « C+SWAPtest ({g;}, vV, V)

| return C/N
Function ParamShift ({g;}):

Gt — (80,80 + Sy .0 1)

G_ — (g()s ceey gO ) gn)
| returnm x (CostFunc(G*) — CostFunc(G™))

{g;} « random initial values
while C({g;}) > e do

{gi} « {gi}+ParamShift ({g;})
L C({gi)) « CostFunc (g}, V. V)

6.3. Hybrid Implementation

We also define a hybrid quantum-classical approach. This
approach is very similar to the pure quantum method. Given
the observed visibilities V;; the expected true visibilities V;j,

and an initial guess at the gain terms {g;}, we encode |/) = V;;
and |¢) = gig;f Vi; using the QPIE encoding. Then, we evaluate



the cost function C({g;}) using the S WAP test of Equation 10 N
times to accurately measure C({g;}). However, unlike the pure
quantum algorithm, instead of using QGD to find the {g;} which
minimize C({g;}), we use the COBYLA minimizer on Scipy.

Due to the quantum uncertainty inherent in the state measure-
ments, neither calibration method is expected to offer quantum
advantage over a classical minimization algorithm. The quan-
tum variational circuit must be chained together with the circuit
for another algorithm such as the QFT to obtain quantum ad-
vantage.

6.4. Results

We evaluate the performance of our quantum calibration al-
gorithm using the QASM simulator. We compare our pure
quantum QGD algorithm to the hybrid quantum-classical ap-
proach. To simplify the analysis we assume that the gain terms
gi are real numbers, but our algorithm can easily be generalized
to complex gains by treating each complex gain as two param-
eters representing the real and imaginary parts.

We evaluate the performance using randomly generated 2 X 2
radio sky images. QGD is run for 1000 steps and with = 0.01.
The error on the obtained gains for various random images are
presented in Fig. 8. The algorithm performs well and can suc-
cessfully recover the gain factors with high accuracy. However,
the runtime for QGD is quite long. Evaluating 1000 steps takes
approximately two minutes on the quantum simulator. In com-
parison, the hybrid approach converges in approximately five
seconds.

While the fully quantum algorithm employing QGD may ap-
pear inefficient due to the significant number of required it-
erations, the hybrid approach involving a classical optimizer
demonstrates promising results. We note, however, that for this
toy example using a purely classical approach is more efficient
and accurate. However, this variational quantum circuit ap-
proach can be extended to include algorithms such as the QFT,
possibly offering quantum advantage.
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Figure 8: Error on recovered gain amplitudes upon the convergence of
multiple trials of the pure QC and hybrid -calibration algorithms. While both
approaches are able to recover the gain facros with high accuracy, the hybrid

approach shows more stability.

7. Quantum Utility

While quantum image processing offers considerable compu-
tational improvements for radio interferometry, the high error
rates of real quantum systems limit quantum utility. Environ-
mental effects can corrupt the quantum gates, leading to errors
in the quantum circuit. In the previous sections we have ignored
the effect of this quantum error.

Assuming that each gate has an error rate of € = P(gate fails)
and a circuit depth of D¢, the global error rate is approxi-
mately:

P(at least 1 gate fails) = 1 — P(all gates succeed)

=1-(1-ePr (12
However, the noise for QC is more complex than statistically
independent failures (Morvan et al., 2023), and for a complete
analysis must be evaluated on real quantum hardware. The
above approach also ignores the effect of measurement and de-
coherence errors, and thus should only be considered an ap-
proximate model of the true expected error rate.

We evaluate the approximate error rate for our QPIE encod-
ing. We build the QPIE encoding quantum circuit using a re-
cursive initialization algorithm from Shende et al. (2006). This
circuit is constructed from R,(0), S X3, and CNOT gates. The
gate errors of the 5 qubit IBM Falcon r4T system have been
measured through randomized benchmarking (Magesan et al.,
2012) and are publically available*: CNOT has a median error
rate of 9.286 x 1073, and R,(f) and SX of 4.175 x 107*. We
calculate that encoding a 4 x 4 image with the recursive initial-
ization algorithm requires 30 R (6), 30 S X and 14 CNOT gates.
Using the error rates above, the probability that the circuit fails
is =~ 15%.

If the gate error is incoherent and uncorrelated®, then then
the effect of this error on the measurement can be reduced by
taking additional shots (Sharma et al., 2020). It may be pos-
sible to mitigate the effect of quantum error by using quantum
error correction techniques to identify corrupted circuits (Shor,
1995). However, these corrective techniques will not work if
the circuit failure rate is too high.

A larger 256 x 256 image requires quantum hardware with
at least 16 qubits, such as the IBM Falcon r5.11 system. This
system has published error rates of 2.091 x 10~* for the S X and
R.(0) and 8.698 x 1073 for the CNOT gates. We calculate that
encoding a QPIE image 256256 requires a circuit with 131070
R.(6), 131070 S X, and 65534 CNOT gates. With such a deep
circuit, the probability that this circuit fails is  100%. The
large circuit depth and high gate error rate make it impossible
to encode the larger QPIE image.

This situation may be improved by using the shorter cir-
cuits proposed by Zhang et al. (2021), which provide D, =

3The S X gate is a special case of R,(6) Gate where the rotation parameter ¢
(the phase change) is 90° or /2 radians.

“https://quantum-computing.ibm.com/services/resources?tab=systems

SWhile gate noise can involve coherent errors such as systematic gate bias,
such errors are hardware-specific
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O(log,N x log,N) algorithms for QPIE encoding. With such a
circuit, a 1024 x 1024 image can be encoded with a circuit depth
of ~ 100 gates, and thus even with a gate error of € = 10~* the
global failure rate will be ~ 1%. However, the large number of
ancillary qubits required by this algorithm make it impractical
to run on current hardware, and may be subject to additional
decoherence errors.

Thus the quantum utility of quantum image processing is
limited to smaller image sizes by the noise and size of available
hardware. However, because the Fourier transform is a linear
operation, a single Fourier transform on a large image can be
split into multiple operations on smaller image sizes (Kashani
et al., 2023; Tolley et al., 2023). It may be possible to per-
form equivalent input splitting with the QC, allowing hybrid
QC algorithms to accommodate larger images. However, QC
hardware will still need to be able to encode and process large
input images in order to offer better performance compared to
classical computing solutions.

8. Conclusion

Quantum Computing has promising applications for image
processing in radio astronomy, but is limited by the error rates
and small qubit sizes of contemporary noisy intermediate-scale
quantum computers (Preskill, 2018). We have investigated the
applicability of the QFT to image synthesis, implemented dif-
ferent image representations in a quantum computer, and eval-
uated their performance with respect to a simple source identi-
fication pipeline. Of the different quantum image encodings,
we find that the QPIE encoding offers excellent algorithmic
speedup without sacrificing image fidelity.

However, QC is not without its own complications. The
phases of complex probability amplitudes can not be easily read
from a quantum state, limiting the applications of the inverse
QFT for predicting visibilities from images. Additionally, al-
though the QFT offers exponential speedup over the FFT, mea-
surement of the quantum state is a probabilistic result which
destroys the superposition. To perform multiple measurements,
one must re-encode and re-measure the state, which can un-
dermine quantum advantage. It is possible that future develop-
ments in quantum algorithms and quantum hardware, especially
quantum memory, may alleviate the re-encoding requirement.

Despite these limitations, we have demonstrated that in cases
where lower image accuracy is tolerable quantum computing
can be a powerful tool for real-time imaging. In the case of
identifying bright transients in the image domain, QC can offer
an exponential speedup over classical computing. The QPIE
encodings may not be suitable for high-fidelity image analysis
demanded by extended source structure or cosmological stud-
ies, but other quantum information encodings may prove more
suitable for these applications (Schuld and Petruccione, 2018).

Additional algorithmic developments in the field of quantum
computing could improve this situation further. Of particular
interest for imaging in radio astronomy are:

e A quantum algorithm for gridding and/or degridding of the
input visibilities

e An implementation of the QFFT that can be applied to
amplitude-based image encodings such as the QPIE.

e A quantum implementation of the non-uniform discrete
Fourier transform, allowing us to skip the the gridding step
required to map the visibilities to a uniform grid.

o An efficient algorithm for QPIE encoding of sparse images

e A quantum algorithm for deconvolution of S with the
dirty beam

Additionally, a wide range of developments in Quantum Ma-
chine Learning (Schuld et al., 2015) could be useful for image
analysis.

While the practical quantum utility of these algorithms is
limited by the small qubit size and noise of contemporary quan-
tum computers, QC technology is a rapidly developing field. As
systems are released with more qubits and less noise, QC could
provide a solution to the future data processing challenges of
radio astronomy.
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